
AGENTIC AI
PLAYBOOK
From conversational assistants to
autonomous agents: a comprehensive
journey through the design and
orchestration of AI Agents

2

Agenda

Introduction 3

1. First concepts: understanding the
foundations of agentic AI

5

2. Different levels of agentic intelligence 10

3. Core components of an AI Agent 13

4. Orchestrating Agents 17

5. Guardrails and Agent Security 23

6. Building an Agent Factory 27

Conclusion 30

3

Introduction
From conversational intelligence to agentic AI: A
new era for intelligent automation
Generative AI has seen an unprecedented
acceleration over the past few years. Once
confined to research labs, it has rapidly
moved into the mainstream tech landscape.
The tipping point? The release of ChatGPT in
2022, a breakthrough that brought this
technology into the hands of millions. That
pivotal moment turned a niche research field
into a global phenomenon, reshaping how
we work, access information, and approach
automation.

From text generation to planning
and action

Generative AI is no longer just about
producing text or powering chatbots. It’s
evolving into a more structured, proactive,
and operational form of intelligence. Today’s
models go beyond generating responses—
they plan, reason, and execute. They’re
becoming systems that can handle complex
tasks, adapt to diverse environments, and
act on behalf of users. This shift, gradual yet
fundamental, is ushering in the age of
agentic AI.

Recent developments such as Chain of
Thought reasoning have equipped language
models with the ability to break down
complex problems into logical steps. This
structured approach leads to more accurate,
coherent, and abstract outputs—an essential
capability for tackling real business use
cases where a simple text response is no
longer enough.

Smarter models for more complex
tasks

Models like OpenAI’s o3 and o4-mini,
DeepSeek R1, IBM’s Granite 3.2, and Google’s
Gemini 2.5 exemplify this shift. With
enhanced planning, contextual memory, and
multi-step reasoning capabilities, they can
follow through multiple rounds of interaction
and execute sophisticated sequences of
actions. These technical leaps are not just
evolutionary—they signal a profound
transformation: the move from generation to
action. AI is stepping out of its assistant role
to become an active player.

An AI agent is more than a powerful model.
It’s an integrated system designed to take
ownership of an overarching goal: devising a
strategy, selecting the right tools, executing
the necessary steps, and adapting along the
way. It operates in digital environments
much like a human assistant—considering
context, managing constraints, and making
intermediate decisions to reach a defined
outcome.

Take a simple example: planning a
workweek. While a voice assistant might
suggest available time slots, an AI agent
goes further—it accesses the calendar,
identifies availabilities, prioritizes meetings,
checks for scheduling conflicts, proposes
options, and sends invitations directly to
participants. It doesn’t just respond—it takes
charge, from start to finish.

4

This new capability relies on a specific
architecture, where the language model is
embedded within a broader system of
specialized functions—commonly referred to
as “tools.” These tools allow the agent to
interact with databases, APIs, enterprise
systems, or even other agents. At each step,
the agent selects the most appropriate
action based on its context and objective.

The Model Context Protocol (MCP) is
emerging as the standard for tool
integration, enabling agents to dynamically
discover, understand, and use tools through
standardized interfaces. Meanwhile, new
agent-to-agent communication protocols—
such as A2A (Agent-to-Agent) and ACP
(Agent Communication Protocol)—are
beginning to define how agents delegate,
coordinate, and collaborate in distributed
environments.

Framing agent autonomy

Not all agents operate at the same level of
autonomy. Some are tightly governed by
predefined rules. Others make decisions
independently. The most advanced can
generate their own code or adapt their
behavior in real time to handle unfamiliar
scenarios. This growing agentic capability
opens up vast new possibilities—but it also
raises critical questions around governance,
security, and ethics.

Delegating a task to an agent means
granting it a degree of initiative. It means
accepting that it may make decisions—
sometimes sensitive ones—without
immediate human oversight. This shift calls
for a redefinition of AI’s role within
information systems: introducing supervision
mechanisms, managing access rights, and
implementing traceability for every action
taken. The power of agentic AI demands
strict control over how it behaves.

A turning point for computing

Agentic systems represent a fundamental
shift: software is no longer just a passive
executor of instructions. It becomes a semi-
autonomous actor—capable of interpreting,
deciding, and operating in open-ended
contexts. This evolution is redefining the very
notion of intelligent automation and laying
the groundwork for a new generation of
digital systems: more flexible, adaptive, and
collaborative by design.

To support this growing autonomy, enterprise
architecture must evolve. Language models
alone are no longer sufficient, they need to
be embedded in a robust ecosystem,
complete with new orchestration and
governance layers to fully realize the
potential of agentic AI.

I N T R O D U C T I O N

This white paper aims to explore the technical foundations of AI agents. It is
intended for architects, developers, and business leaders who want to look beyond
the hype and gain a clear understanding of the underlying mechanisms that
power these systems. From agent design to orchestration in distributed
environments, it lays the groundwork for the controlled integration of AI agents into
modern, robust, and scalable information systems.

5

01. First concepts:
understanding the
foundations of agentic AI
An introduction to how AI agents operate
and how they can carry out tasks
autonomously and adaptively

6

Chapter 1
First concepts: the foundations of agentic AI

An artificial intelligence agent is a system
designed to perform a task on behalf of a
user—autonomously, in a structured way,
and with the ability to adapt. Unlike
traditional applications that follow fixed
instructions, an agent relies on a reasoning
engine—most often a large language model
(LLM*)—and interacts dynamically with its
environment to achieve a defined goal.

An agent is built to manage the end-to-end
execution of a workflow. It doesn’t just
provide information—it acts on the user’s
behalf. This ability rests on three core
components: a reasoning engine (LLM), a set
of tools to interact with external systems, and
a framework of instructions that defines its
operational boundaries.

The execution loop: how agents
operate

At the heart of agent behavior lies a
structured execution loop made up of four
key phases:

Analysis: The agent receives a task or
request expressed in natural language. It
analyzes the input to understand the goal,
context, constraints, and available data.

Planning: Based on this analysis, the agent
builds a strategy, breaks the objective down
into subtasks, and determines the sequence
of actions to be performed. This planning
may be explicit—as a list of steps—or implicit,
embedded in the agent’s internal reasoning.

Tool selection: The agent identifies the most
relevant tools—APIs, functions, databases,
scripts, and so on—from its toolkit to carry
out each step in the plan.

Execution: The agent performs the planned
actions, observes the outcomes, detects
potential errors or anomalies, and adjusts its

strategy if needed.
This process repeats itself iteratively and
dynamically until the goal is reached. With
each cycle, the agent re-evaluates the
situation, incorporates new information, and
continuously refines its behavior to respond
to changes or unexpected conditions.

*An LLM (Large Language
Model) is an artificial
intelligence model based
on a transformer
architecture. It is trained
on massive textual
datasets to predict and
generate coherent,
context-aware sequences
of natural language.
Today’s most advanced
models—such as those in
the GPT family (Generative
Pre-trained Transformer)—
are built on this
architecture.

7

C H A P T E R 1

With each iteration, the agent consumes tokens, the basic units of computation
used to process text (inputs, outputs, and context). This directly impacts
execution costs, especially in environments where the agent interacts with
large, powerful language models. It’s therefore crucial to keep this constraint in
mind when designing an agent, in order to strike the right balance between
autonomy, decision relevance, and operational efficiency.

This architecture enables the agent to
break down complex tasks into smaller,
manageable steps—each of which can
leverage a specialized tool. This
modular approach improves both
execution robustness and the accuracy
of outcomes.

This is what’s known as an agentic
workflow: rather than simply
generating a one-off response, the
model actively orchestrates a
sequence of actions—with built-in
control and oversight at every stage.

8

Evaluating when to use an AI agent

Not every process justifies the use of an
agent. However, according to A Practical
Guide to Building Agents (OpenAI) and
Building Effective Agents (Anthropic), there
are three key criteria that help determine
whether a given workflow truly benefits from
an agentic approach:

1. Decision complexity

Agents are particularly well suited to tasks
that require nuanced decision-making. This
includes situations where choices must be
weighed, exceptions managed, weak signals
interpreted, or conflicting information
reconciled.

2. Fluid or hard-to-codify business
rules

In some workflows, business rules aren’t
necessarily unstable but they’re difficult to
formalize algorithmically. They involve edge
cases, exceptions, or depend on contractual,
legal, or contextual nuances that require
semantic understanding rather than brute
logic.

For example, a supplier compliance review in
a large industrial or energy company. Each
supplier is evaluated based on documents
like internal policies, safety standards, or
regulatory guidelines. These documents are
often lengthy, complex, and their
interpretation depends on operational or
legal context.

In such cases, an LLM-based agent can step
in—not to enforce fixed rules, but to interpret
the content, identify ambiguous scenarios,
and reason like a compliance expert. These
agents are especially valuable when the
rules are understandable in natural
language but difficult to translate into
deterministic code.

3. Nature of the data involved

Agents shine when dealing with unstructured
data: free text, helpdesk tickets, emails, PDFs,
meeting notes, or Teams conversations—all
of which are challenging for traditional
systems to process effectively. An agent can
read, extract, cross-reference, and
synthesize this information as part of its
reasoning process.

A common use case is customer support. An
agent can identify key elements (product,
issue, tone of the message), consult internal
documentation, draft a personalized
response, and even trigger follow-up
actions—such as issuing a refund, escalating
the request, or updating a support ticket.

I N T R O D U C T I O N

When a process goes beyond rigid, sequential logic, when it requires
judgment, adaptive rules, or the handling of unstructured data—an
AI agent becomes a strategic enabler. It doesn’t just automate. It
understands context, reasons like a human, and takes action
accordingly.

9

AI agents are not a one-size-fits-all solution
and in some contexts, they simply aren’t the
best choice. If a process is strictly linear, with
no intermediate decisions, clearly defined
and stable rules, and well-structured data
that can be queried via SQL or APIs, then
using an agent adds unnecessary
complexity.

Similarly, in scenarios where every step
requires human supervision or where real-
time traceability is critical—such as in
accounting or highly regulated
environments—simpler automation
approaches like RPA, scripting, or webhooks
are often more appropriate. They’re easier to
audit, more predictable, and typically more
reliable.

Concrete examples of the tipping
point

Take the case of a company that handles
500 support tickets per day. A simple rules-
based system is used to triage requests
based on keywords. It works—until the
requests become more complex:
“I got an error after trying to update my
profile.”
“My product arrived damaged, and I haven’t
heard back since my first email.”

At that point, the rules engine starts to break
down. It misclassifies requests. It misses
context. It creates frustration.

In such cases, an agent can step in. It reads
the message, understands the intent, checks
the customer’s history, reviews product
documentation, proposes a tailored
response—and can sometimes resolve the
issue without human intervention. It doesn’t
just follow rules—it understands and acts.

Another example: a marketing team wants to
assess the impact of a campaign. A
traditional dashboard provides static KPIs—
click-through rates, conversions,
impressions. An AI agent, on the other hand,
goes further. It pulls and structures data from
multiple sources: CRM, social media, web
analytics, internal surveys.

It identifies key trends, surfaces weak signals
(like a sudden spike in negative mentions or
an unexpected keyword), and starts
formulating hypotheses. From there, it can
generate an executive summary, suggest
areas for improvement, or propose an A/B
test. More than that, it can trigger actions:
alert a team, schedule a corrective post, or
draft a brief for the next campaign. It’s no
longer just an analysis tool—it’s a decision
partner that observes, anticipates, and acts.

I N T R O D U C T I O N

A decision that depends on context

Building an AI agent comes at a cost—in time, infrastructure, and oversight. It
also requires a certain level of technical and governance maturity. That’s why
it’s important not to “over-agentize.” The right approach is to start from the
actual business need, assess the true complexity of the workflow, and choose
the architecture that fits best. Sometimes, simpler really is smarter.

10

02. Different levels of
agentic intelligence
Exploring the various degrees of agent
autonomy and assessing their
technological maturity

11

Chapter 2
Different levels of agentic intelligence

Not all AI agents are created equal. The term
“agent” covers a wide spectrum of systems—
from basic conversational assistants to
entities capable of generating and executing
their own code. This diversity calls for a more
nuanced classification: one based on levels
of agentic intelligence.

Agentic intelligence refers to a system’s
capacity to act autonomously within a given
environment. It goes beyond answering a
question or executing a predefined
command. It involves initiative, the ability to
manage uncertainty, to plan actions—and, in
some cases, to create new tools or strategies
to achieve a goal. This capacity exists on a
continuum, from passive assistant to fully
generative agent.

To structure this diversity, we draw on a
classification inspired by AI company
Hugging Face, which defines five levels of
agentic capability, from 0 to 4. This
framework is a useful tool to assess system
maturity, anticipate supervision
requirements, and calibrate operational
expectations.

Level 0 (☆☆☆☆) – Conversational
assistant: replies without action

At this level, the agent takes no initiative. It
simply responds to user questions or
commands, without triggering any external
actions. It may access data sources (search
engines, internal knowledge bases), but
remains fundamentally passive.

It doesn’t decide when to act, nor how: there
is no functional autonomy. This is the realm
of basic chatbots—a more sophisticated
interface, perhaps, but not a true agent.

Level 1 (★☆☆☆) – Deterministic
workflow agent: guided execution

Here, the agent can decide when to act, but
not how. It follows pre-defined paths built by
developers, behaving like an intelligent
router.

Typically, it identifies user intent and routes
the request to a predefined API, tool, or
workflow. It doesn’t construct strategies or
combine actions on its own.

This is the most common model in industrial
contexts today: useful, robust, but with very
limited autonomy.

Level 2 (★★☆☆) – Semi-autonomous
agent

At this stage, the agent can decide both
when to act and which tool to use, along with
relevant parameters. It assembles
sequences of API calls based on context.

This marks the beginning of real functional
autonomy—albeit within clear limits. The
agent knows which tools are available and
how to use them to reach a simple objective.

Example: a customer service agent that
understands a query, queries a database,
extracts the right information, and generates
a personalized response. It acts
independently, but within a tightly scoped
domain.

Level 3 (★★★☆) – Autonomous
orchestration agent

At this level, the agent can plan multiple
steps to solve a problem, adapt its strategy
as it goes, and decide whether to continue or
stop.

It can chain actions, coordinate multiple
tools or sub-agents, and structure its own
logic. This is where agentic decision-making
matures: the agent becomes a conductor
orchestrating a dynamic process.

12

We’re talking here about advanced personal
assistants, agents that can manage
schedules, prioritize tasks, or coordinate
multiple systems. Such use cases remain
rare in production due to their complexity
and the need for strict oversight.

Level 4 (★★★★) – Fully autonomous agent

This is the most advanced stage. The agent
can create its own means of action: it writes
code, executes it, and adapts its behavior to
new or evolving environments.

Such an agent can detect a limitation in its
current capabilities, write a Python function
to overcome it, run that code, incorporate it
into its toolkit, and use it to fulfill its objective.
It can devise and revise strategies without
human intervention.

While this level of autonomy unlocks
powerful new possibilities, it also raises
serious concerns: around security,
governance, and traceability. These agents
remain largely experimental today.

Where do we stand today?

In most real-world applications, operational
agents currently sit between level 0 and level
1. That means they can decide when and
how to act using pre-defined tools—but only
within tightly controlled parameters.

They respond to queries or route them to
existing workflows, without true decision-
making or adaptive reasoning. These
systems are deterministic, robust, and
auditable—qualities that are still highly
valued in enterprise environments.

Level 2 agents—those capable of
dynamically calling tools and adapting their
behavior to context—are starting to emerge,
especially in startups where process
flexibility and agile tech stacks allow for
more experimentation. These agents are
typically used in individual or exploratory
contexts, often by developers, innovation
teams, or technical profiles.

However, they are not yet deployed at scale.
The lack of full verifiability, the potential for
errors, and the need for close supervision still
limit their production use.

Full autonomy—levels 3 and 4—remains
largely in the realm of advanced research. It
introduces major governance challenges, as
it implies giving a system not only the
authority to act but also to reconfigure itself.
Delegating that kind of power is only
acceptable if paired with extremely robust
guardrails, oversight mechanisms, and
validation processes.

C H A P T E R 2

A spectrum, not a label

It’s important to recognize that this typology isn’t a set of rigid boxes—it’s a
continuum. An agent’s level of autonomy can shift depending on the task at hand,
the permissions granted, or the level of supervision in place.

Agentic capability is not an absolute property—it’s contextual.
This graduated approach allows technical teams to better scope their ambitions,
define acceptable levels of risk, and design agents that are aligned with real-
world needs—rather than an idealized vision of what AI could do.

13

03. Core components
of an AI Agent
Models, tools, and instructions—the
foundational building blocks of agentic AI.
An introduction to agent communication
protocols (MCP, A2A, and ACP)

14

Chapter 3
Core components of an AI agent

An AI agent is more than just a language
model wrapped in a user interface. It’s a
composite system whose ability to act
autonomously depends on the interplay
between several foundational components.
Understanding the nature and role of these
building blocks is essential to designing
agents that are effective, stable, and
controllable.

The exact architecture may vary depending
on the implementation, but every agent
relies on a core triad: a model, a set of tools,
and a framework of instructions. These three
elements form the agent’s backbone. It’s the
combination—and orchestration—of these
components that defines the system’s
capabilities, boundaries, and degree of
autonomy.

The model: the agent’s reasoning
engine

The model serves as the agent’s cognitive
core. It interprets user input, formulates
action plans, decides which tools to invoke,
and reacts to intermediate results. It plays
the role of the “brain” in the agent’s
architecture.

In most cases, this model is a Large
Language Model (LLM)—such as GPT-4
(OpenAI), Claude (Anthropic), Mixtral

(Mistral), or Llama (Meta). This choice is far
from trivial: different models offer different
trade-offs in terms of performance, cost,
stability, and capabilities. Some are
optimized for speed, others for reasoning,
memory, or multi-document processing.

According to OpenAI’s Practical Guide to
Building Agents, a recommended best
practice is to start with the most capable
model available in order to establish a solid
functional baseline. Once that’s done, it’s
possible to explore model downsizing—
assessing the acceptable trade-offs in
performance to optimize for cost.

It’s also possible—and often advisable—to
combine multiple models within a single
agentic system. A lightweight model might
handle simpler tasks (intent detection, quick
classification), while a more advanced one
takes over for complex reasoning or planning
stages.

Finally, the agent architecture should remain
flexible enough to swap one model for
another as the ecosystem evolves. Because
LLMs are improving rapidly, a sound
technical design includes abstraction layers
and fallback mechanisms that allow new
models to be integrated without needing to
overhaul the entire agent framework.

15

An agent doesn’t just generate text, it takes
action. To act, it must be able to manipulate
digital objects, interact with systems, query
databases, and execute business functions.
That’s where tools come in.

A tool is an external function made available
to the agent. It could be an API, a SQL query, a
Python function, a shell script, or even a
simulated click within a user interface. The
agent doesn’t need to understand how the
tool works internally—it only needs to know
what it does and how to invoke it.

At initialization, the agent is provided with a
list of available tools. Too many poorly
defined tools can create confusion. Too few
tools make the agent ineffective. The ideal
setup includes a small number of clearly
named, well-documented tools that have
been independently tested outside the
model loop.

This logic can be extended through a
modular sub-agent architecture, where each
sub-agent functions like a tool in its own
right. For instance, a "Mail" agent might
bundle capabilities like searching emails,
sending messages, or creating calendar
invites. Other agents can then delegate tasks
to it, treating it as a callable resource. This
agent-as-tool model promotes modularity,
reusability, and tighter governance over
complex behaviors.

The system prompt: instructions
that define the agent’s behavioral
framework

A model and tools alone are not enough. To
behave in a consistent, goal-aligned, and
predictable way, an agent needs explicit
instructions. These are typically provided
through a system prompt—a foundational
text that defines the agent’s role,
responsibilities, constraints, and priorities.

System instructions serve as a code of
conduct. They tell the agent what it is
supposed to do, under what circumstances,
and with which boundaries. These
instructions may include:

– Role definition: “You are an agent

responsible for handling customer support
inquiries related to digital products.”

– Behavioral rules: “Always greet the user,
remain neutral, and never promise a
refund without verification.”

– Procedural logic: “If the user requests a
password reset, call the reset_password
tool.”

– Edge case handling: “If the user is angry or
threatening, escalate immediately to a
human operator.”

Writing these instructions is a critical step. It
requires a careful balance between clarity,
completeness, and brevity. Vague prompts
result in unpredictable behavior; overly
detailed prompts can make the agent rigid
or overly verbose. A good practice is to build
on existing operational content—support
scripts, internal charters, or procedure
manuals—to draft high-quality prompts.

In more advanced systems, instructions can
be dynamic. A single agent may adapt its
role depending on the context, shift priorities
based on real-time signals, or integrate
session-specific parameters (user name,
interaction history, priority level, etc.).

C H A P T E R 3

These three components—
model, tools, and instructions—
form the backbone of any AI
agent.They define what the
agent can do, how it does it,
and why it takes action. The
way these elements are
connected determines not only
the agent’s performance, but
also its ability to operate in
real-world environments,
collaborate with humans or
other agents, and comply with
the technical and ethical
requirements of an information
system.

16

The Model Context Protocol (MCP): a
standard for tool integration

In the context of tool-enabled agents, a new
standard has emerged to simplify the
connection between AI agents and external
resources: the Model Context Protocol (MCP).
Introduced by Anthropic in November 2024,
MCP provides a unified method for exposing
tools to agents—without requiring complex
technical adaptations.

MCP acts as a universal interface, much like
what HTTP represented for the web. It defines
a common schema for describing available
tools: their functions, accepted parameters,
and usage rules. This standardization allows
any agent—regardless of its underlying
model—to understand how to use a given
tool, provided the tool complies with the MCP
specification.

In practical terms, an MCP-compatible tool
can be discovered, queried, and invoked by
an agent through a formal schema—without
rewriting integration code. This dramatically
simplifies multi-agent deployments,
business logic reuse, and interoperability
across frameworks.

For LLMOps teams, MCP streamlines the path
to production: it reduces integration time,
improves the reliability of tool calls, and
simplifies testing and monitoring. For
business teams, it ensures that agents
remain interoperable with critical information
system assets while allowing for better

scalability.

Source : https://norahsakal.com/blog/authors/norah/

Source: https://norahsakal.com/blog/authors/norah/

MCP is to artificial intelligence what HTTP was
to the web: a universal standard that enables
seamless interaction between AI models and
external environments.

Designed to simplify how agents connect to
tools, data, and services, MCP has been
adopted by major players including
Microsoft (Copilot Studio, Azure AI Agent,
Autogen), Amazon (Bedrock), OpenAI (Agent
SDK, announced for ChatGPT Desktop),
Google (Agent Development Kit – ADK), and
IBM. It is now supported by most agent
frameworks.

C H A P T E R 3

https://norahsakal.com/blog/authors/norah/

17

04. Orchestrating
Agents
Designing early agentic architectures and
coordinating agent behavior

18

Chapter 4
Orchestrating agents

Designing an AI agent isn’t just about picking
a model, giving it tools, and writing a prompt.
These components must be brought
together within a coherent execution logic—
one that can turn a user request into a
structured sequence of actions. That’s the
role of orchestration.

Orchestration refers to the set of
mechanisms that guide the agent over time:
how it sequences its actions, how it makes
decisions at each step, and how it handles
uncertainty, errors, or unexpected situations.
An agent doesn’t act just once—it reacts,
observes, adjusts, and iterates. This dynamic
process—this continuous loop of reasoning,
action, and observation—is at the heart of
how agentic systems function.

As discussed earlier, an AI agent operates
through a central execution loop known as
the agent loop. This loop is typically
structured in four main stages, led by the
language model:

1. Analysis : The agent receives an input
(task, request, instruction), analyzes the
context, interprets user intent, and identifies
constraints and available data.

2. Planning : It builds a strategy, breaks
the goal into steps, selects an approach, and
anticipates dependencies or success
conditions.

3. Tools selection : It chooses the most
relevant tools (APIs, functions, databases,
etc.) for each step, determines how to invoke
them, and in what order.

4. Execution : It carries out the actions,
observes the outcomes, detects errors or
anomalies, and adjusts the plan if necessary.
The loop then restarts, continuing until the
task is complete.

This iterative, adaptive cycle allows the
agent to continuously refine its actions
based on context and feedback. This view of
orchestration—and the architectural
patterns it implies—is shared by both OpenAI
and Anthropic in their foundational work on
autonomous agents.

Single-agent orchestration

In simple architectures, a single agent
handles the entire process and makes all
decisions. This is the single-agent model. The
agent receives a request, decides what to
do, calls the appropriate tools, evaluates the
outcome, and loops until completion.

This approach works well when the task is
well-defined, limited to a single domain, or
short enough that no delegation is required.
It’s also easier to develop, test, and monitor.
Most early agents deployed in production
have followed this model.

However, as task complexity increases—due
to a wider range of actions, domains, or
longer execution times—this model starts to
show its limits. It becomes difficult for a
single agent to handle all aspects of a
distributed or specialized workflow efficiently.

19

Multi-agent architectures:
specialization and coordination

To overcome the limitations of single-agent
setups, more advanced systems turn to
multi-agent architectures. In this model,
several agents work together, each taking on
a specific role in completing the task.
Orchestration then becomes a matter of
coordination: who does what, when, and
under which interaction rules.

According to OpenAI’s Practical Guide to
Building Effective Agents, there are two main
patterns for orchestrating multiple agents.

The hierarchical model: the
manager agent

In this approach, a primary agent—known as
the manager—receives the user request. It
analyzes the task, breaks it down into
subtasks, and delegates each subtask to a
specialized agent.

Each sub-agent is assigned a clearly defined
mission. It operates autonomously, using its
own tools and following its own set of
instructions. Once completed, it returns a
partial result to the manager.

The manager then consolidates all outputs

and delivers a final response to the user.This
model is especially well suited for workflows
where each step involves a distinct domain
of expertise—such as information extraction,
semantic processing, business decision-
making, or communication. It enables
cognitive load distribution, modular behavior
design, and the reuse of specialized agents
across different contexts.

C H A P T E R 4

Today, most agent frameworks
rely on handoffs to structure
coordination between agents.
These handoffs define who does
what, and when.

During the design phase, it’s
critical to clearly specify these
transitions: each agent must be
assigned a well-defined task,
with clearly structured input and
output formats—distinct from
those of other agents.

This clarity ensures smooth
cooperation, avoids ambiguity,
and helps maintain robustness
even as the system scales or
evolves.

Orchestration - agent manager that routes a translation task to specialized sub-agents — OpenAI example

20

The collaborative model: agent-to-
agent dialogue

In a more distributed setup, agents operate
on equal footing and interact through
dialogue. Each agent is autonomous,
capable of initiating or responding to
interactions, and contributes to the collective
resolution of the task.

This architecture—rooted in distributed AI
and multi-agent systems—is more
challenging to control, but it opens up
compelling opportunities in terms of
adaptability, resilience, and creative
problem-solving. It enables agents to
brainstorm, challenge each other’s
hypotheses, and validate each other’s plans
in real time.

A hybrid architecture: manager-led
coordination with collaborative sub-
agents

Consider a prototype of an agent-based
platform designed to support research and
document analysis. The architecture follows
a hybrid model, combining a central
manager agent for coordination and
multiple specialized sub-agents, each
responsible for a specific capability: querying
internal databases, conducting web
research, extracting insights, structuring
summaries, and more.

In this setup, the central manager agent
receives user requests and breaks them
down into specific subtasks. For instance,
when a consultant asks for an in-depth
market trends analysis, the manager agent
identifies the components of the task and
delegates them accordingly.

One sub-agent, specialized in Key Opinion
Leader (KOL) identification, is tasked with
detecting relevant influencers in the target
domain. At the same time, another agent
focuses on trend analysis, collecting and
interpreting current market data. These two
agents collaborate by exchanging
intermediate results and refining their
respective analyses.

Meanwhile, a news monitoring agent tracks
the latest developments, providing real-time
updates to the others. Each of these agents
may, in turn, rely on additional sub-agents—
for instance, to conduct online searches or
draft detailed reports.

Once the subtasks are completed, the
manager agent gathers all partial results,
integrates them, and synthesizes a final
response to deliver back to the consultant.
This modular and cooperative approach
allows each agent to contribute its domain
expertise while ensuring efficient
coordination and a high-quality, unified
output.

C H A P T E R 4

21

Agent cooperation protocols (A2A &
ACP): toward universal
interoperability

As discussed earlier, orchestration can be
built around a pyramidal structure of
specialized sub-agents. At the base, tool
agents execute simple functions—file
reading, API calls, classification. Higher up,
manager agents delegate tasks to these
specialized agents. This model makes it
easier to break down complex workflows into
reusable components.

But to make such pyramids work at scale,
seamless agent-to-agent cooperation
becomes essential. That’s where emerging
inter-agent protocols come in—designed to
enable heterogeneous agents to collaborate
without friction.
While the Model Context Protocol (MCP) has
standardized how agents connect to their
environment (tools, data), the next step is
enabling direct cooperation between agents
themselves.

Two protocols are gaining traction:

• A2A (Agent-to-Agent) – developed by
Google (April 2025)

• ACP (Agent Communication Protocol) –
launched by IBM (February 2025)

These protocols aim to standardize how
agents discover each other, delegate tasks,
track execution, and return results or
artifacts. The goal is simple: allow agents
developed using different frameworks,
running on different platforms, to interact
without the need for custom integration.

If MCP handles vertical integration (agent
environment), A2A and ACP enable horizontal
coordination (agent agent). Together, they
lay the groundwork for distributed
ecosystems—where agents can coordinate,
learn from one another, and collectively
solve complex tasks.

Concrete use case: recruitment
automation

An HR agent initiates a candidate sourcing
request. This task is delegated to multiple
specialized agents, each querying different
databases. The results are aggregated, and
another agent takes over to schedule
interviews. All of this happens automatically,
within a shared workspace, thanks to inter-
agent cooperation protocols.

C H A P T E R 3

22

Simplicity and modularity: lessons
from Anthropic on agent design

As AI systems grow more autonomous, new
architectural challenges are emerging. While
most agents currently in production still fall
within levels 0 and 1 of agentic intelligence—
conversational assistants or smart routers—
the long-term goal is to build systems
capable of managing their own behavior, as
seen in levels 2 through 4.

In that journey, the insights shared by
Anthropic are particularly instructive. Having
supported many enterprise teams in
developing LLM-based agents, their
takeaway is clear: the most effective
implementations are often the simplest.

Anthropic distinguishes two main
families of architectures:

- Agentic workflows: sequences of actions
predefined by the developer, with the LLM
executing them without initiative. These
correspond to levels 0 and 1—agents that
act, but only within rigid boundaries.

- Autonomous agents: systems in which the
LLM manages the flow—choosing steps,
selecting tools, and adapting to the
environment. This is the core of levels 2 to
4, involving growing autonomy, dynamic
planning, and contextual adaptation.

Anthropic proposes a typology of battle-
tested orchestration patterns, which can be
layered to gradually increase system
complexity:

- Prompt chaining (Level 1): breaking
down a task into fixed steps, where each
output feeds the next input

- Routing (Level 1–2): directing requests to
specialized processes based on their
nature

- Parallelization (Level 2): handling
subtasks in parallel, or generating
multiple variations for comparison

- Orchestrator–worker (Level 3): a central
agent dynamically plans and delegates
tasks to sub-agents, then integrates their

results

- Evaluator–optimizer (Level 3–4): a
feedback loop where one LLM critiques
and improves the outputs of another

- Autonomous agents (Level 4): systems
capable of planning, executing,
observing, adjusting—and even
generating their own code to expand
their capabilities

These patterns show that there is no sudden
leap to full autonomy, but rather a step-by-
step progression toward agentic
intelligence—by assembling simple,
controllable building blocks.

“Success in the LLM space isn’t about
building the most sophisticated system. It’s
about building the right system for your
needs— Anthropic

This incremental approach prevents teams
from skipping critical maturity steps. Even
reaching level 3, the orchestrator agent,
requires strong guardrails: logging,
sandboxing, and human-in-the-loop
supervision.

As for level 4 agents—generative and
adaptive—their use in production remains
extremely limited today.

C H A P T E R 4

The key takeaway is simple:
only add complexity when it
truly improves performance.

This measured approach to
agentic design helps keep
both costs and environmental
impact under control: the
more complex and
autonomous an agent is, the
higher its computational
needs—and therefore, its
energy consumption.

23

05. Guardrails and
Agent Security
Implementing protective mechanisms and
early insights into the security risks of
autonomous agents

24

Chapter 5
Guardrails and Agent Security

As AI agents gain autonomy, their behavior
becomes harder to predict, test, and
validate.

This rise in agentic capability—while
necessary to handle complex tasks—
inevitably leads to a loss of control if no
oversight mechanisms are in place. The
more freedom an agent has in choosing its
actions, the more likely it is to interact with
sensitive systems, trigger unintended side
effects, or make real-world mistakes.

For this reason, deploying an AI agent into
production requires a robust system of
safeguards, commonly referred to as
guardrails. These mechanisms constrain the
agent’s autonomy, limit its scope of action,
filter its outputs, and ensure that its behavior
remains aligned with business expectations,
regulatory requirements, and security
standards.

Why guardrails are necessary

The need for guardrails stems directly from
the probabilistic and generative nature of
language models. Unlike deterministic code,
an AI agent:

- does not follow a single, predictable
execution path,

cannot guarantee the accuracy of its
outputs,

does not fully “understand” the real-world
impact of its actions.

It may hallucinate facts, misinterpret
prompts in unexpected ways, or trigger tool
sequences that were not anticipated during
testing. Moreover, errors may not be
immediately visible—poor decisions can
produce delayed, subtle, but critical
consequences.In this context, guardrails
serve a dual purpose. On one hand, they

protect the user by enforcing reliability,
consistency, and alignment with the
intended use. On the other, they protect the
organization, by constraining risky behavior,
logging decisions, and ensuring full
traceability.As shown in PHARE, a benchmark
published by French startup Giskard, even
the most widely used models can confidently
generate incorrect answers, shift their
reliability based on the user's tone, or see
their accuracy drop sharply when operating
under brevity constraints. These risks make
strong supervision mechanisms essential for
any production-grade AI agent.

What exactly do guardrails control?

Guardrails can target several dimensions of
agent behavior. Common examples include:

1. Response quality – Avoiding outputs that
are inappropriate, irrelevant, or
incoherent.

2. Business rule enforcement – Preventing
or flagging actions that require approval
or must meet strict conditions (e.g.,
refunds above €100, contract
cancellations, or alert triggers).;

3. Data protection – Ensuring the agent
does not expose sensitive information or
handle personal data without explicit
consent.

25

Main types of guardrails
Syntactic guardrails

Syntactic guardrails are simple filters applied
to the agent’s inputs or outputs. These can
include regular expressions or validation
rules for expected formats, type or structure
checks for JSON responses or tool
arguments, as well as automatic
normalization of values like dates, units, or
codes.

These filters ensure that the model’s outputs
comply with basic formatting constraints
before they’re used in production. Their
implementation typically doesn’t require
another LLM—basic deterministic rules are
often sufficient.

Semantic guardrails

Semantic guardrails focus on the meaning of
the agent’s responses or actions. They
include:

• Toxicity filters, which screen for offensive,
discriminatory, hateful, or violent content—
even when expressed indirectly or
unintentionally. These are essential to
maintain safe, compliant communication,
particularly in high-exposure or sensitive
environments.

• PII (Personally Identifiable Information)
detection, which automatically identifies
and flags sensitive data such as names,
addresses, phone numbers, or user IDs—
preventing accidental disclosure.

• Security filters, which validate function
arguments before execution (e.g.,
ensuring a "price" field remains within
authorized limits).

These guardrails are often powered by
smaller, specialized generative models
rather than full-scale LLMs, making them
more efficient and easier to operate.

Behavioral or business logic guardrails

Behavioral guardrails restrict or condition
specific actions, regardless of whether they
are technically valid. They’re often
implemented directly in system prompts
(instructions) or embedded within the
orchestration logic.

This layer is essential for enforcing business
rules and domain-specific constraints—it
ensures that agents don’t just act correctly,
but appropriately within the operational
context.

Dynamic guardrails

Dynamic guardrails are context-aware rules,
triggered based on the agent’s behavior,
task history, or confidence level. For example:

- An agent may be programmed to abort its
task if it encounters too many consecutive
errors.

- It may pause execution if the user
expresses doubt (“Are you sure?”, “This
doesn’t seem right…”).

These mechanisms introduce a form of built-
in caution, embedding a reflex of prudence
into agent behavior and promoting safer,
more responsible execution.

Human guardrails

Human oversight remains a vital
complement to automated guardrails. In all
sensitive situations, agents should be able to:

- Escalate to a human operator in cases of
ambiguity or uncertainty.

- Submit critical actions for manual
approval before completion.

C H A P T E R 5

26

Security risks: insights from early
field reports

As AI agents become more autonomous and
start being deployed in real-world
environments, early feedback—particularly
from Palo Alto Networks in their May 2025
report "AI Agents are Here, So Are the
Threats"—highlights a series of critical
vulnerabilities that must be anticipated and
addressed.

Prompt injection attacks are
becoming more sophisticated

One of the most concerning threats is
prompt injection, where malicious users
manipulate the agent’s behavior, extract
confidential information, or hijack its tools for
unintended purposes. These attacks don’t
necessarily require deliberate malice—
ambiguous or loosely framed prompts can
already create exploitable openings.

Vulnerabilities often stem from
design flaws, not frameworks

Broadly speaking, most security issues
observed in agent deployments are not tied
to any specific framework or technology, but
rather to poor architectural choices, weak
integration practices, or misconfigurations.

Agents connected to poorly secured third-
party tools—such as scripts, APIs, or
databases—have a vastly increased attack
surface. A single weak link can compromise
the entire system.

For example, a malicious user could exploit a
vulnerability in one of these tools to bypass
application-level guardrails, access sensitive
data, execute unauthorized code, or redirect
the agent from its intended task.

If an agent has unrestricted access to a
database management tool, a carefully
crafted prompt could lead it to run a
destructive command—believing it to be a
legitimate user request. The attacker
wouldn’t need infrastructure access; instead,
they would manipulate the agent into
executing the command on their behalf, in
good faith.

Such an attack—enabled by a lack of tool-
level containment—could lead to critical
data loss with no immediate alert.

Data leaks with critical
consequences

Another major threat is the leakage of
sensitive data. AI agents may inadvertently
disclose API keys, tokens, or passwords—
exposing infrastructure toimpersonation and
with minimal execution rights. attacks or
privilege escalation.

Agents equipped with code interpreters are
also vulnerable to code execution attacks,
especially if their execution environments are
not properly sandboxed or restricted.

In light of these risks, no single measure is
sufficient to ensure safety. What’s needed is
a systemic security strategy, with multiple
layers of control applied throughout the
agent’s lifecycle. This includes:
• Strengthening prompt design to prevent

out-of-scope queries
• Implementing real-time content filters to

block malicious instructions
• Strictly validating the data sent to external

tools invoked by the agent
• Running agents in secure, sandboxed

environments—with limited network
access and minimal execution privileges

As AI agents grow more autonomous, they
also become more exposed to complex,
evolving vulnerabilities—risks that cannot
be mitigated through isolated fixes. Only a
risk-driven, cyber-by-design approach,
embedded from the earliest design phases
and integrating security, governance, and
resilience, can effectively prevent misuse
and targeted attacks.

This requires close collaboration between
cybersecurity and AI teams, as
demonstrated by the crisis simulation
conducted by ANSSI and Wavestone at the
AI Summit, which aimed to raise awareness
around these emerging threats.

C H A P T E R 5

27

06. Building an Agent

Factory
Laying the groundwork to experiment with and
deploy agentic AI within organizations

28

Chapter 6
From experimentation to industrialization:
Building an Agent Factory
To move from experimentation to controlled
industrialization, organizations need to
structure their agent development efforts
through an Agent Factory. This approach is
built on two fundamental pillars:

A shared technical foundation
At its core, the Agent Factory relies on a
centralized architecture that organizes all
resources required to operate AI agents. This
includes:

• Unified access to AI models, with
supervision, monitoring, and traceability
mechanisms;

• Centralized access to business functions,
databases, and connectors, exposed via
a standardized interface—making them
easily discoverable and usable by agents
without custom development;

• A single point of reference for all
deployed agents, describing their roles,
capabilities, current status, and how they
interact with one another.

A dedicated team of Agent Architects: this
cross-functional team acts as a center of
excellence. It supports business teams in
identifying opportunities, designing agent
workflows, defining agent roles, and
structuring pilots or experiments. The team
also plays a key role in governance, risk
assessment, and ensuring alignment with
the organization’s strategic priorities.

Together, these two pillars ensure a gradual
and controlled maturity curve for the
deployment of agentic systems across the
enterprise.

Identifying high-impact use cases
and early quick wins

Before scaling up, it’s essential to focus on
use cases where agentic AI already
demonstrates tangible value—automating
not only repetitive tasks, but also processes
that involve reasoning, planning, and
autonomous action. Several families of
agents are already emerging as promising
candidates for early experimentation.

SWE agents (Software Engineering
Agents)

Code generation is a well-established use
case where generative AI delivers clear
value. Today, the paradigm is shifting—from
conversational assistants helping developers
write code on request, to semi-autonomous
agents capable of operating across entire
codebases.

These agents now support developers in a
wide range of technical tasks: code
generation, unit test creation,
documentation, refactoring, vulnerability
scanning, and error analysis via log
inspection.

Microsoft reports that 30% of its code is
currently generated by AI, and projects that
figure to rise to 95% by 2030—reinforcing the
agent’s role as a key contributor to software
engineering workflows.

Deep Search agents

Designed to conduct in-depth research
across large and heterogeneous information
sources—internal documentation, search
engines, intranets, legal or scientific
databases—these agents can synthesize
information, cross-reference sources, and
produce structured reports.

They are particularly useful in roles involving
strategic intelligence, competitive analysis,
audit, and decision support.

29

Customer support agents

These agents understand the context of user
requests—including request history, tone,
and the product involved—then access
relevant knowledge bases, generate
personalized responses, and can even take
direct action, such as escalating to technical
support, issuing a refund, or routing the case
to a qualified human agent.

They reduce the workload of support teams
while enhancing the overall customer
experience.

Such use cases are particularly well suited to
agentic AI, as they combine natural
language understanding, business logic, and
interactions with third-party systems—a
combination that generative AI can now
reliably orchestrate at scale.

A centralized infrastructure to
orchestrate agents and tools

Deploying agentic systems at scale requires
a structured infrastructure, typically built in
three foundational layers:

The first step is to centralize access to
generative AI models through a Model
Registry. This registry lists all models
available within the organization. It manages
versioning, usage policies, quotas, and
security constraints. It is essential for
ensuring traceability of LLM usage,
monitoring performance, managing
inference costs, and can allow agents to
dynamically select the most appropriate
model for a given task.

The second step is the implementation of a
Resource Registry, which centralizes all
technical resources (APIs, databases,
functions, connectors). Thanks to the MCP
protocol, agents can dynamically discover
these resources, inspect their schemas, and

connect to them without specific
implementation. The Resource Registry also
plays a key role in governance: it defines
access rights, authentication, traceability,
and security protocols for critical systems.

The third step is to deploy an Agent Registry.
This acts as a directory of agents: listing
those available, their roles, statuses,
preferences, technical capabilities, and
collaboration modalities. This registry
enables the activation of coordinated multi-
agent environments, leveraging protocols
such as A2A or ACP. For example, a manager
agent can dynamically delegate a task to a
remote agent, or two agents can negotiate
how best to divide a complex workload.

Equipping teams to start
experimenting

Designing an effective AI agent involves
more than just connecting an LLM to a few
tools. It requires full orchestration: context
awareness, dynamic planning, action
selection, error handling, and continuous
adaptation.

Agent frameworks play a central role in this
effort. They provide:
• Native handling of the perception →

action → feedback loop
• Connectors to predefined tools
• memory and logging capabilities
• Evaluation and result interpretation

mechanisms

For simple or exploratory use cases, a
manual implementation or low-code tools
like Langflow or Copilot Studio may suffice.
But for critical operations, distributed
systems, or sensitive use cases, a robust
framework becomes essential. The choice
of framework will depend on the
organization’s tech ecosystem, the required
level of customization, and the deployment
strategy (cloud, on-premise, edge, etc.).

C H A P T E R 5

30

07. Conclusion
Toward a thoughtful and effective
approach to agentic AI

31

Conclusion

AI agents represent a shift in automation: capable of
understanding, planning, and acting, they pave the way
for more adaptive and autonomous systems — provided
that their governance, technical integration, and
reliability limits are rigorously managed.

It is in this context that Wavestone’s AI
Practice offering truly comes into its own.
Aware of the technical, human, and
organizational challenges tied to the rise of
agent-based systems, we have developed a
structured approach to guide companies
through their transformation. This approach
covers the entire lifecycle of an AI agent —
from defining robust governance, to
identifying high-impact use cases, through

to experimentation, industrialization, and
secure production deployment.

Our ambition is clear: to harness agent-
based systems in service of business
operations with rigor and clarity — unlocking
their full potential without compromising on
control, data security, or system stability.

32

Authors

Paul BARBASTE
Senior Consultant AI
AI Researcher, Head of the AI &
Neuroscience Program at École
Polytechnique and HEC

this link redirects you to this person's linkedin
profile

Acknowledgments
Marie LANGÉ

Senior Manager AI

Wavestone AI Experts

Chadi HANTOUCHE
Partner AI

this link redirects you to this person's linkedin
profile

Julien FLOCH
Associate Partner AI

this link redirects you to this person's linkedin
profile

Stéphan MIR
Associate Partner AI

this link redirects you to this person's linkedin
profile

this link redirects you to this person's
linkedin profile

Clement PEPONNET
Consultant Senior AI

this link redirects you to this person's
linkedin profileTom WILTBERGER

Consultant Senior AI
this link redirects you to this person's
linkedin profile

Badr ACHOUR
Manager AI

this link redirects you to this person's
linkedin profile

https://www.linkedin.com/in/paulbarbaste/
https://www.linkedin.com/in/stephanmir/
https://www.linkedin.com/in/julienfloch/
https://www.linkedin.com/in/chadihantouche/
https://www.linkedin.com/in/langemarie/
https://www.linkedin.com/in/cl%C3%A9ment-peponnet-b26906194/
https://www.linkedin.com/in/tom-wiltberger/
https://www.linkedin.com/in/badrachour/

33

About Wavestone
Wavestone is a consulting powerhouse, dedicated to supporting strategic

transformations of businesses and organizations in a world that is undergoing
unprecedented change, with the ambition to create positive and long-lasting

impacts for all its stakeholders.
Drawing on more than 5,500 employees in 17 countries across Europe,

North America and Asia, the firm offers a 360° portfolio of high-value consulting
services, combining seamlessly first-class sector expertise with a wide range

of cross-industry capabilities.
Wavestone is listed on Euronext Paris and recognized as a Great Place to Work®.

www.wavestone.com

	Wavestone template May 24
	Diapositive 1 AGENTIC AI
	Diapositive 2 Agenda
	Diapositive 3 Introduction
	Diapositive 4
	Diapositive 5 01. First concepts: understanding the foundations of agentic AI
	Diapositive 6 Chapter 1
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10 02. Different levels of agentic intelligence
	Diapositive 11 Chapter 2
	Diapositive 12
	Diapositive 13 03. Core components of an AI Agent
	Diapositive 14 Chapter 3
	Diapositive 15
	Diapositive 16
	Diapositive 17 04. Orchestrating Agents
	Diapositive 18 Chapter 4
	Diapositive 19
	Diapositive 20
	Diapositive 21
	Diapositive 22
	Diapositive 23 05. Guardrails and Agent Security
	Diapositive 24 Chapter 5
	Diapositive 25
	Diapositive 26
	Diapositive 27 06. Building an Agent Factory
	Diapositive 28 Chapter 6
	Diapositive 29
	Diapositive 30 07. Conclusion
	Diapositive 31 Conclusion
	Diapositive 32 Authors
	Diapositive 33

