
AGENTIC AI
PLAYBOOK
From conversational assistants to 
autonomous agents: a comprehensive 
journey through the design and 
orchestration of AI Agents



2

Agenda

Introduction 3

1. First concepts: understanding the 
foundations of agentic AI

5

2. Different levels of agentic intelligence 10

3. Core components of an AI Agent 13

4. Orchestrating Agents 17

5. Guardrails and Agent Security 23

6. Building an Agent Factory 27

Conclusion 30



3

Introduction
From conversational intelligence to agentic AI: A 
new era for intelligent automation
Generative AI has seen an unprecedented 
acceleration over the past few years. Once 
confined to research labs, it has rapidly 
moved into the mainstream tech landscape. 
The tipping point? The release of ChatGPT in 
2022, a breakthrough that brought this 
technology into the hands of millions. That 
pivotal moment turned a niche research field 
into a global phenomenon, reshaping how 
we work, access information, and approach 
automation.

From text generation to planning 
and action

Generative AI is no longer just about 
producing text or powering chatbots. It’s 
evolving into a more structured, proactive, 
and operational form of intelligence. Today’s 
models go beyond generating responses—
they plan, reason, and execute. They’re 
becoming systems that can handle complex 
tasks, adapt to diverse environments, and 
act on behalf of users. This shift, gradual yet 
fundamental, is ushering in the age of 
agentic AI.

Recent developments such as Chain of 
Thought reasoning have equipped language 
models with the ability to break down 
complex problems into logical steps. This 
structured approach leads to more accurate, 
coherent, and abstract outputs—an essential 
capability for tackling real business use 
cases where a simple text response is no 
longer enough.

Smarter models for more complex 
tasks

Models like OpenAI’s o3 and o4-mini, 
DeepSeek R1, IBM’s Granite 3.2, and Google’s 
Gemini 2.5 exemplify this shift. With 
enhanced planning, contextual memory, and 
multi-step reasoning capabilities, they can 
follow through multiple rounds of interaction 
and execute sophisticated sequences of 
actions. These technical leaps are not just 
evolutionary—they signal a profound 
transformation: the move from generation to 
action. AI is stepping out of its assistant role 
to become an active player.

An AI agent is more than a powerful model. 
It’s an integrated system designed to take 
ownership of an overarching goal: devising a 
strategy, selecting the right tools, executing 
the necessary steps, and adapting along the 
way. It operates in digital environments 
much like a human assistant—considering 
context, managing constraints, and making 
intermediate decisions to reach a defined 
outcome.

Take a simple example: planning a 
workweek. While a voice assistant might 
suggest available time slots, an AI agent 
goes further—it accesses the calendar, 
identifies availabilities, prioritizes meetings, 
checks for scheduling conflicts, proposes 
options, and sends invitations directly to 
participants. It doesn’t just respond—it takes 
charge, from start to finish.
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This new capability relies on a specific 
architecture, where the language model is 
embedded within a broader system of 
specialized functions—commonly referred to 
as “tools.” These tools allow the agent to 
interact with databases, APIs, enterprise 
systems, or even other agents. At each step, 
the agent selects the most appropriate 
action based on its context and objective.

The Model Context Protocol (MCP) is 
emerging as the standard for tool 
integration, enabling agents to dynamically 
discover, understand, and use tools through 
standardized interfaces. Meanwhile, new 
agent-to-agent communication protocols—
such as A2A (Agent-to-Agent) and ACP 
(Agent Communication Protocol)—are 
beginning to define how agents delegate, 
coordinate, and collaborate in distributed 
environments.

Framing agent autonomy

Not all agents operate at the same level of 
autonomy. Some are tightly governed by 
predefined rules. Others make decisions 
independently. The most advanced can 
generate their own code or adapt their 
behavior in real time to handle unfamiliar 
scenarios. This growing agentic capability 
opens up vast new possibilities—but it also 
raises critical questions around governance, 
security, and ethics.

Delegating a task to an agent means 
granting it a degree of initiative. It means 
accepting that it may make decisions—
sometimes sensitive ones—without 
immediate human oversight. This shift calls 
for a redefinition of AI’s role within 
information systems: introducing supervision 
mechanisms, managing access rights, and 
implementing traceability for every action 
taken. The power of agentic AI demands 
strict control over how it behaves.

A turning point for computing

Agentic systems represent a fundamental 
shift: software is no longer just a passive 
executor of instructions. It becomes a semi-
autonomous actor—capable of interpreting, 
deciding, and operating in open-ended 
contexts. This evolution is redefining the very 
notion of intelligent automation and laying 
the groundwork for a new generation of 
digital systems: more flexible, adaptive, and 
collaborative by design.

To support this growing autonomy, enterprise 
architecture must evolve. Language models 
alone are no longer sufficient, they need to 
be embedded in a robust ecosystem, 
complete with new orchestration and 
governance layers to fully realize the 
potential of agentic AI.

I N T R O D U C T I O N

This white paper aims to explore the technical foundations of AI agents. It is 
intended for architects, developers, and business leaders who want to look beyond 
the hype and gain a clear understanding of the underlying mechanisms that 
power these systems. From agent design to orchestration in distributed 
environments, it lays the groundwork for the controlled integration of AI agents into 
modern, robust, and scalable information systems.



5

01. First concepts: 
understanding the 
foundations of agentic AI
An introduction to how AI agents operate 
and how they can carry out tasks 
autonomously and adaptively
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Chapter 1
First concepts: the foundations of agentic AI

An artificial intelligence agent is a system 
designed to perform a task on behalf of a 
user—autonomously, in a structured way, 
and with the ability to adapt. Unlike 
traditional applications that follow fixed 
instructions, an agent relies on a reasoning 
engine—most often a large language model 
(LLM*)—and interacts dynamically with its 
environment to achieve a defined goal.

An agent is built to manage the end-to-end 
execution of a workflow. It doesn’t just 
provide information—it acts on the user’s 
behalf. This ability rests on three core 
components: a reasoning engine (LLM), a set 
of tools to interact with external systems, and 
a framework of instructions that defines its 
operational boundaries.

The execution loop: how agents 
operate

At the heart of agent behavior lies a 
structured execution loop made up of four 
key phases:

Analysis: The agent receives a task or 
request expressed in natural language. It 
analyzes the input to understand the goal, 
context, constraints, and available data.

Planning: Based on this analysis, the agent 
builds a strategy, breaks the objective down 
into subtasks, and determines the sequence 
of actions to be performed. This planning 
may be explicit—as a list of steps—or implicit, 
embedded in the agent’s internal reasoning.

Tool selection: The agent identifies the most 
relevant tools—APIs, functions, databases, 
scripts, and so on—from its toolkit to carry 
out each step in the plan.

Execution: The agent performs the planned 
actions, observes the outcomes, detects 
potential errors or anomalies, and adjusts its 

strategy if needed.
This process repeats itself iteratively and 
dynamically until the goal is reached. With 
each cycle, the agent re-evaluates the 
situation, incorporates new information, and 
continuously refines its behavior to respond 
to changes or unexpected conditions.

*An LLM (Large Language 
Model) is an artificial 
intelligence model based 
on a transformer 
architecture. It is trained 
on massive textual 
datasets to predict and 
generate coherent, 
context-aware sequences 
of natural language. 
Today’s most advanced 
models—such as those in 
the GPT family (Generative 
Pre-trained Transformer)—
are built on this 
architecture.
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C H A P T E R 1

With each iteration, the agent consumes tokens, the basic units of computation 
used to process text (inputs, outputs, and context). This directly impacts 
execution costs, especially in environments where the agent interacts with 
large, powerful language models. It’s therefore crucial to keep this constraint in 
mind when designing an agent, in order to strike the right balance between 
autonomy, decision relevance, and operational efficiency.

This architecture enables the agent to 
break down complex tasks into smaller, 
manageable steps—each of which can 
leverage a specialized tool. This 
modular approach improves both 
execution robustness and the accuracy 
of outcomes.

This is what’s known as an agentic 
workflow: rather than simply 
generating a one-off response, the 
model actively orchestrates a 
sequence of actions—with built-in 
control and oversight at every stage.
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Evaluating when to use an AI agent

Not every process justifies the use of an 
agent. However, according to A Practical 
Guide to Building Agents (OpenAI) and 
Building Effective Agents (Anthropic), there 
are three key criteria that help determine 
whether a given workflow truly benefits from 
an agentic approach:

1. Decision complexity

Agents are particularly well suited to tasks 
that require nuanced decision-making. This 
includes situations where choices must be 
weighed, exceptions managed, weak signals 
interpreted, or conflicting information 
reconciled.

2. Fluid or hard-to-codify business 
rules

In some workflows, business rules aren’t 
necessarily unstable but they’re difficult to 
formalize algorithmically. They involve edge 
cases, exceptions, or depend on contractual, 
legal, or contextual nuances that require 
semantic understanding rather than brute 
logic.

For example, a supplier compliance review in 
a large industrial or energy company. Each 
supplier is evaluated based on documents 
like internal policies, safety standards, or 
regulatory guidelines. These documents are 
often lengthy, complex, and their 
interpretation depends on operational or 
legal context.

In such cases, an LLM-based agent can step 
in—not to enforce fixed rules, but to interpret 
the content, identify ambiguous scenarios, 
and reason like a compliance expert. These 
agents are especially valuable when the 
rules are understandable in natural 
language but difficult to translate into 
deterministic code.

3. Nature of the data involved

Agents shine when dealing with unstructured 
data: free text, helpdesk tickets, emails, PDFs, 
meeting notes, or Teams conversations—all 
of which are challenging for traditional 
systems to process effectively. An agent can 
read, extract, cross-reference, and 
synthesize this information as part of its 
reasoning process.

A common use case is customer support. An 
agent can identify key elements (product, 
issue, tone of the message), consult internal 
documentation, draft a personalized 
response, and even trigger follow-up 
actions—such as issuing a refund, escalating 
the request, or updating a support ticket.

I N T R O D U C T I O N

When a process goes beyond rigid, sequential logic, when it requires 
judgment, adaptive rules, or the handling of unstructured data—an 
AI agent becomes a strategic enabler. It doesn’t just automate. It 
understands context, reasons like a human, and takes action 
accordingly.
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AI agents are not a one-size-fits-all solution 
and in some contexts, they simply aren’t the 
best choice. If a process is strictly linear, with 
no intermediate decisions, clearly defined 
and stable rules, and well-structured data 
that can be queried via SQL or APIs, then 
using an agent adds unnecessary 
complexity.

Similarly, in scenarios where every step 
requires human supervision or where real-
time traceability is critical—such as in 
accounting or highly regulated 
environments—simpler automation 
approaches like RPA, scripting, or webhooks 
are often more appropriate. They’re easier to 
audit, more predictable, and typically more 
reliable.

Concrete examples of the tipping 
point

Take the case of a company that handles 
500 support tickets per day. A simple rules-
based system is used to triage requests 
based on keywords. It works—until the 
requests become more complex:
“I got an error after trying to update my 
profile.”
“My product arrived damaged, and I haven’t 
heard back since my first email.”

At that point, the rules engine starts to break 
down. It misclassifies requests. It misses 
context. It creates frustration.

In such cases, an agent can step in. It reads 
the message, understands the intent, checks 
the customer’s history, reviews product 
documentation, proposes a tailored 
response—and can sometimes resolve the 
issue without human intervention. It doesn’t 
just follow rules—it understands and acts.

Another example: a marketing team wants to 
assess the impact of a campaign. A 
traditional dashboard provides static KPIs—
click-through rates, conversions, 
impressions. An AI agent, on the other hand, 
goes further. It pulls and structures data from 
multiple sources: CRM, social media, web 
analytics, internal surveys.

It identifies key trends, surfaces weak signals 
(like a sudden spike in negative mentions or 
an unexpected keyword), and starts 
formulating hypotheses. From there, it can 
generate an executive summary, suggest 
areas for improvement, or propose an A/B 
test. More than that, it can trigger actions: 
alert a team, schedule a corrective post, or 
draft a brief for the next campaign. It’s no 
longer just an analysis tool—it’s a decision 
partner that observes, anticipates, and acts.

I N T R O D U C T I O N

A decision that depends on context

Building an AI agent comes at a cost—in time, infrastructure, and oversight. It 
also requires a certain level of technical and governance maturity. That’s why 
it’s important not to “over-agentize.” The right approach is to start from the 
actual business need, assess the true complexity of the workflow, and choose 
the architecture that fits best. Sometimes, simpler really is smarter.
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02. Different levels of 
agentic intelligence
Exploring the various degrees of agent 
autonomy and assessing their 
technological maturity
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Chapter 2
Different levels of agentic intelligence

Not all AI agents are created equal. The term 
“agent” covers a wide spectrum of systems—
from basic conversational assistants to 
entities capable of generating and executing 
their own code. This diversity calls for a more 
nuanced classification: one based on levels 
of agentic intelligence.

Agentic intelligence refers to a system’s 
capacity to act autonomously within a given 
environment. It goes beyond answering a 
question or executing a predefined 
command. It involves initiative, the ability to 
manage uncertainty, to plan actions—and, in 
some cases, to create new tools or strategies 
to achieve a goal. This capacity exists on a 
continuum, from passive assistant to fully 
generative agent.

To structure this diversity, we draw on a 
classification inspired by AI company 
Hugging Face, which defines five levels of 
agentic capability, from 0 to 4. This 
framework is a useful tool to assess system 
maturity, anticipate supervision 
requirements, and calibrate operational 
expectations.

Level 0 (☆☆☆☆) – Conversational 
assistant: replies without action

At this level, the agent takes no initiative. It 
simply responds to user questions or 
commands, without triggering any external 
actions. It may access data sources (search 
engines, internal knowledge bases), but 
remains fundamentally passive.

It doesn’t decide when to act, nor how: there 
is no functional autonomy. This is the realm 
of basic chatbots—a more sophisticated 
interface, perhaps, but not a true agent.

Level 1 (★☆☆☆) – Deterministic 
workflow agent: guided execution

Here, the agent can decide when to act, but 
not how. It follows pre-defined paths built by 
developers, behaving like an intelligent 
router.

Typically, it identifies user intent and routes 
the request to a predefined API, tool, or 
workflow. It doesn’t construct strategies or 
combine actions on its own.

This is the most common model in industrial 
contexts today: useful, robust, but with very 
limited autonomy.

Level 2 (★★☆☆) – Semi-autonomous
agent

At this stage, the agent can decide both 
when to act and which tool to use, along with 
relevant parameters. It assembles 
sequences of API calls based on context.

This marks the beginning of real functional 
autonomy—albeit within clear limits. The 
agent knows which tools are available and 
how to use them to reach a simple objective.

Example: a customer service agent that 
understands a query, queries a database, 
extracts the right information, and generates 
a personalized response. It acts 
independently, but within a tightly scoped 
domain.

Level 3 (★★★☆) – Autonomous 
orchestration agent

At this level, the agent can plan multiple 
steps to solve a problem, adapt its strategy 
as it goes, and decide whether to continue or 
stop.

It can chain actions, coordinate multiple 
tools or sub-agents, and structure its own 
logic. This is where agentic decision-making 
matures: the agent becomes a conductor 
orchestrating a dynamic process.
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We’re talking here about advanced personal 
assistants, agents that can manage 
schedules, prioritize tasks, or coordinate 
multiple systems. Such use cases remain 
rare in production due to their complexity 
and the need for strict oversight.

Level 4 (★★★★) – Fully autonomous agent

This is the most advanced stage. The agent 
can create its own means of action: it writes 
code, executes it, and adapts its behavior to 
new or evolving environments.

Such an agent can detect a limitation in its 
current capabilities, write a Python function 
to overcome it, run that code, incorporate it 
into its toolkit, and use it to fulfill its objective. 
It can devise and revise strategies without 
human intervention.

While this level of autonomy unlocks 
powerful new possibilities, it also raises 
serious concerns: around security, 
governance, and traceability. These agents 
remain largely experimental today.

------------

Where do we stand today?

In most real-world applications, operational 
agents currently sit between level 0 and level 
1. That means they can decide when and 
how to act using pre-defined tools—but only 
within tightly controlled parameters.

They respond to queries or route them to 
existing workflows, without true decision-
making or adaptive reasoning. These 
systems are deterministic, robust, and 
auditable—qualities that are still highly 
valued in enterprise environments.

Level 2 agents—those capable of 
dynamically calling tools and adapting their 
behavior to context—are starting to emerge, 
especially in startups where process 
flexibility and agile tech stacks allow for 
more experimentation. These agents are 
typically used in individual or exploratory 
contexts, often by developers, innovation 
teams, or technical profiles.

However, they are not yet deployed at scale. 
The lack of full verifiability, the potential for 
errors, and the need for close supervision still 
limit their production use.

Full autonomy—levels 3 and 4—remains 
largely in the realm of advanced research. It 
introduces major governance challenges, as 
it implies giving a system not only the 
authority to act but also to reconfigure itself. 
Delegating that kind of power is only 
acceptable if paired with extremely robust 
guardrails, oversight mechanisms, and 
validation processes.

C H A P T E R 2

A spectrum, not a label

It’s important to recognize that this typology isn’t a set of rigid boxes—it’s a 
continuum. An agent’s level of autonomy can shift depending on the task at hand, 
the permissions granted, or the level of supervision in place.

Agentic capability is not an absolute property—it’s contextual.
This graduated approach allows technical teams to better scope their ambitions, 
define acceptable levels of risk, and design agents that are aligned with real-
world needs—rather than an idealized vision of what AI could do.
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03. Core components 
of an AI Agent
Models, tools, and instructions—the 
foundational building blocks of agentic AI. 
An introduction to agent communication 
protocols (MCP, A2A, and ACP)
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Chapter 3
Core components of an AI agent

An AI agent is more than just a language 
model wrapped in a user interface. It’s a 
composite system whose ability to act 
autonomously depends on the interplay 
between several foundational components. 
Understanding the nature and role of these 
building blocks is essential to designing 
agents that are effective, stable, and 
controllable.

The exact architecture may vary depending 
on the implementation, but every agent 
relies on a core triad: a model, a set of tools, 
and a framework of instructions. These three 
elements form the agent’s backbone. It’s the 
combination—and orchestration—of these 
components that defines the system’s 
capabilities, boundaries, and degree of 
autonomy.

The model: the agent’s reasoning 
engine

The model serves as the agent’s cognitive 
core. It interprets user input, formulates 
action plans, decides which tools to invoke, 
and reacts to intermediate results. It plays 
the role of the “brain” in the agent’s 
architecture.

In most cases, this model is a Large 
Language Model (LLM)—such as GPT-4 
(OpenAI), Claude (Anthropic), Mixtral 

(Mistral), or Llama (Meta). This choice is far 
from trivial: different models offer different 
trade-offs in terms of performance, cost, 
stability, and capabilities. Some are 
optimized for speed, others for reasoning, 
memory, or multi-document processing.

According to OpenAI’s Practical Guide to 
Building Agents, a recommended best 
practice is to start with the most capable 
model available in order to establish a solid 
functional baseline. Once that’s done, it’s 
possible to explore model downsizing—
assessing the acceptable trade-offs in 
performance to optimize for cost.

It’s also possible—and often advisable—to 
combine multiple models within a single 
agentic system. A lightweight model might 
handle simpler tasks (intent detection, quick 
classification), while a more advanced one 
takes over for complex reasoning or planning 
stages.

Finally, the agent architecture should remain 
flexible enough to swap one model for 
another as the ecosystem evolves. Because 
LLMs are improving rapidly, a sound 
technical design includes abstraction layers 
and fallback mechanisms that allow new 
models to be integrated without needing to 
overhaul the entire agent framework.
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An agent doesn’t just generate text, it takes 
action. To act, it must be able to manipulate 
digital objects, interact with systems, query 
databases, and execute business functions. 
That’s where tools come in.

A tool is an external function made available 
to the agent. It could be an API, a SQL query, a 
Python function, a shell script, or even a 
simulated click within a user interface. The 
agent doesn’t need to understand how the 
tool works internally—it only needs to know 
what it does and how to invoke it.

At initialization, the agent is provided with a 
list of available tools. Too many poorly 
defined tools can create confusion. Too few 
tools make the agent ineffective. The ideal 
setup includes a small number of clearly 
named, well-documented tools that have 
been independently tested outside the 
model loop.

This logic can be extended through a 
modular sub-agent architecture, where each 
sub-agent functions like a tool in its own 
right. For instance, a "Mail" agent might 
bundle capabilities like searching emails, 
sending messages, or creating calendar 
invites. Other agents can then delegate tasks 
to it, treating it as a callable resource. This 
agent-as-tool model promotes modularity, 
reusability, and tighter governance over 
complex behaviors.

The system prompt: instructions 
that define the agent’s behavioral 
framework

A model and tools alone are not enough. To 
behave in a consistent, goal-aligned, and 
predictable way, an agent needs explicit 
instructions. These are typically provided 
through a system prompt—a foundational 
text that defines the agent’s role, 
responsibilities, constraints, and priorities.

System instructions serve as a code of 
conduct. They tell the agent what it is 
supposed to do, under what circumstances, 
and with which boundaries. These 
instructions may include:

– Role definition: “You are an agent 

responsible for handling customer support 
inquiries related to digital products.”

– Behavioral rules: “Always greet the user, 
remain neutral, and never promise a 
refund without verification.”

– Procedural logic: “If the user requests a 
password reset, call the reset_password 
tool.”

– Edge case handling: “If the user is angry or 
threatening, escalate immediately to a 
human operator.”

Writing these instructions is a critical step. It 
requires a careful balance between clarity, 
completeness, and brevity. Vague prompts 
result in unpredictable behavior; overly 
detailed prompts can make the agent rigid 
or overly verbose. A good practice is to build 
on existing operational content—support 
scripts, internal charters, or procedure 
manuals—to draft high-quality prompts.

In more advanced systems, instructions can 
be dynamic. A single agent may adapt its 
role depending on the context, shift priorities 
based on real-time signals, or integrate 
session-specific parameters (user name, 
interaction history, priority level, etc.).

C H A P T E R 3

These three components—
model, tools, and instructions—
form the backbone of any AI 
agent.They define what the 
agent can do, how it does it, 
and why it takes action. The 
way these elements are 
connected determines not only 
the agent’s performance, but 
also its ability to operate in 
real-world environments, 
collaborate with humans or 
other agents, and comply with 
the technical and ethical 
requirements of an information 
system.
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The Model Context Protocol (MCP): a 
standard for tool integration

In the context of tool-enabled agents, a new 
standard has emerged to simplify the 
connection between AI agents and external 
resources: the Model Context Protocol (MCP). 
Introduced by Anthropic in November 2024, 
MCP provides a unified method for exposing 
tools to agents—without requiring complex 
technical adaptations.

MCP acts as a universal interface, much like 
what HTTP represented for the web. It defines 
a common schema for describing available 
tools: their functions, accepted parameters, 
and usage rules. This standardization allows 
any agent—regardless of its underlying 
model—to understand how to use a given 
tool, provided the tool complies with the MCP 
specification.

In practical terms, an MCP-compatible tool 
can be discovered, queried, and invoked by 
an agent through a formal schema—without 
rewriting integration code. This dramatically 
simplifies multi-agent deployments, 
business logic reuse, and interoperability 
across frameworks.

For LLMOps teams, MCP streamlines the path 
to production: it reduces integration time, 
improves the reliability of tool calls, and 
simplifies testing and monitoring. For 
business teams, it ensures that agents 
remain interoperable with critical information 
system assets while allowing for better 

scalability.

Source : https://norahsakal.com/blog/authors/norah/

Source: https://norahsakal.com/blog/authors/norah/

MCP is to artificial intelligence what HTTP was 
to the web: a universal standard that enables 
seamless interaction between AI models and 
external environments.

Designed to simplify how agents connect to 
tools, data, and services, MCP has been 
adopted by major players including 
Microsoft (Copilot Studio, Azure AI Agent, 
Autogen), Amazon (Bedrock), OpenAI (Agent 
SDK, announced for ChatGPT Desktop), 
Google (Agent Development Kit – ADK), and 
IBM. It is now supported by most agent 
frameworks.

C H A P T E R 3

https://norahsakal.com/blog/authors/norah/
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04. Orchestrating
Agents
Designing early agentic architectures and 
coordinating agent behavior
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Chapter 4
Orchestrating agents

Designing an AI agent isn’t just about picking 
a model, giving it tools, and writing a prompt. 
These components must be brought 
together within a coherent execution logic—
one that can turn a user request into a 
structured sequence of actions. That’s the 
role of orchestration.

Orchestration refers to the set of 
mechanisms that guide the agent over time: 
how it sequences its actions, how it makes 
decisions at each step, and how it handles 
uncertainty, errors, or unexpected situations. 
An agent doesn’t act just once—it reacts, 
observes, adjusts, and iterates. This dynamic 
process—this continuous loop of reasoning, 
action, and observation—is at the heart of 
how agentic systems function.

As discussed earlier, an AI agent operates 
through a central execution loop known as 
the agent loop. This loop is typically 
structured in four main stages, led by the 
language model:

1. Analysis : The agent receives an input 
(task, request, instruction), analyzes the 
context, interprets user intent, and identifies 
constraints and available data.

2. Planning : It builds a strategy, breaks 
the goal into steps, selects an approach, and 
anticipates dependencies or success 
conditions.

3. Tools selection : It chooses the most 
relevant tools (APIs, functions, databases, 
etc.) for each step, determines how to invoke 
them, and in what order.

4. Execution : It carries out the actions, 
observes the outcomes, detects errors or 
anomalies, and adjusts the plan if necessary. 
The loop then restarts, continuing until the 
task is complete.

This iterative, adaptive cycle allows the 
agent to continuously refine its actions 
based on context and feedback. This view of 
orchestration—and the architectural 
patterns it implies—is shared by both OpenAI 
and Anthropic in their foundational work on 
autonomous agents.

Single-agent orchestration

In simple architectures, a single agent 
handles the entire process and makes all 
decisions. This is the single-agent model. The 
agent receives a request, decides what to 
do, calls the appropriate tools, evaluates the 
outcome, and loops until completion.

This approach works well when the task is 
well-defined, limited to a single domain, or 
short enough that no delegation is required. 
It’s also easier to develop, test, and monitor. 
Most early agents deployed in production 
have followed this model.

However, as task complexity increases—due 
to a wider range of actions, domains, or 
longer execution times—this model starts to 
show its limits. It becomes difficult for a 
single agent to handle all aspects of a 
distributed or specialized workflow efficiently.
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Multi-agent architectures: 
specialization and coordination

To overcome the limitations of single-agent 
setups, more advanced systems turn to 
multi-agent architectures. In this model, 
several agents work together, each taking on 
a specific role in completing the task. 
Orchestration then becomes a matter of 
coordination: who does what, when, and 
under which interaction rules.

According to OpenAI’s Practical Guide to 
Building Effective Agents, there are two main 
patterns for orchestrating multiple agents.

The hierarchical model: the 
manager agent

In this approach, a primary agent—known as 
the manager—receives the user request. It 
analyzes the task, breaks it down into 
subtasks, and delegates each subtask to a 
specialized agent.

Each sub-agent is assigned a clearly defined 
mission. It operates autonomously, using its 
own tools and following its own set of 
instructions. Once completed, it returns a 
partial result to the manager.

The manager then consolidates all outputs 

and delivers a final response to the user.This 
model is especially well suited for workflows 
where each step involves a distinct domain 
of expertise—such as information extraction, 
semantic processing, business decision-
making, or communication. It enables 
cognitive load distribution, modular behavior 
design, and the reuse of specialized agents 
across different contexts.

C H A P T E R 4

Today, most agent frameworks 
rely on handoffs to structure 
coordination between agents. 
These handoffs define who does 
what, and when.

During the design phase, it’s 
critical to clearly specify these 
transitions: each agent must be 
assigned a well-defined task, 
with clearly structured input and 
output formats—distinct from 
those of other agents.

This clarity ensures smooth 
cooperation, avoids ambiguity, 
and helps maintain robustness 
even as the system scales or 
evolves.

Orchestration - agent manager that routes a translation task to specialized sub-agents — OpenAI example
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The collaborative model: agent-to-
agent dialogue

In a more distributed setup, agents operate 
on equal footing and interact through 
dialogue. Each agent is autonomous, 
capable of initiating or responding to 
interactions, and contributes to the collective 
resolution of the task.

This architecture—rooted in distributed AI 
and multi-agent systems—is more 
challenging to control, but it opens up 
compelling opportunities in terms of 
adaptability, resilience, and creative 
problem-solving. It enables agents to 
brainstorm, challenge each other’s 
hypotheses, and validate each other’s plans 
in real time.

A hybrid architecture: manager-led 
coordination with collaborative sub-
agents

Consider a prototype of an agent-based 
platform designed to support research and 
document analysis. The architecture follows 
a hybrid model, combining a central 
manager agent for coordination and 
multiple specialized sub-agents, each 
responsible for a specific capability: querying 
internal databases, conducting web 
research, extracting insights, structuring 
summaries, and more.

In this setup, the central manager agent 
receives user requests and breaks them 
down into specific subtasks. For instance, 
when a consultant asks for an in-depth 
market trends analysis, the manager agent 
identifies the components of the task and 
delegates them accordingly.

One sub-agent, specialized in Key Opinion 
Leader (KOL) identification, is tasked with 
detecting relevant influencers in the target 
domain. At the same time, another agent 
focuses on trend analysis, collecting and 
interpreting current market data. These two 
agents collaborate by exchanging 
intermediate results and refining their 
respective analyses.

Meanwhile, a news monitoring agent tracks 
the latest developments, providing real-time 
updates to the others. Each of these agents 
may, in turn, rely on additional sub-agents—
for instance, to conduct online searches or 
draft detailed reports.

Once the subtasks are completed, the 
manager agent gathers all partial results, 
integrates them, and synthesizes a final 
response to deliver back to the consultant. 
This modular and cooperative approach 
allows each agent to contribute its domain 
expertise while ensuring efficient 
coordination and a high-quality, unified 
output.

C H A P T E R 4



21

Agent cooperation protocols (A2A & 
ACP): toward universal 
interoperability

As discussed earlier, orchestration can be 
built around a pyramidal structure of 
specialized sub-agents. At the base, tool 
agents execute simple functions—file 
reading, API calls, classification. Higher up, 
manager agents delegate tasks to these 
specialized agents. This model makes it 
easier to break down complex workflows into 
reusable components.

But to make such pyramids work at scale, 
seamless agent-to-agent cooperation 
becomes essential. That’s where emerging 
inter-agent protocols come in—designed to 
enable heterogeneous agents to collaborate 
without friction.
While the Model Context Protocol (MCP) has 
standardized how agents connect to their 
environment (tools, data), the next step is 
enabling direct cooperation between agents 
themselves.

Two protocols are gaining traction:

• A2A (Agent-to-Agent) – developed by 
Google (April 2025)

• ACP (Agent Communication Protocol) – 
launched by IBM (February 2025)

These protocols aim to standardize how 
agents discover each other, delegate tasks, 
track execution, and return results or 
artifacts. The goal is simple: allow agents 
developed using different frameworks, 
running on different platforms, to interact 
without the need for custom integration.

If MCP handles vertical integration (agent  
environment), A2A and ACP enable horizontal 
coordination (agent  agent). Together, they 
lay the groundwork for distributed 
ecosystems—where agents can coordinate, 
learn from one another, and collectively 
solve complex tasks.

Concrete use case: recruitment 
automation

An HR agent initiates a candidate sourcing 
request. This task is delegated to multiple 
specialized agents, each querying different 
databases. The results are aggregated, and 
another agent takes over to schedule 
interviews. All of this happens automatically, 
within a shared workspace, thanks to inter-
agent cooperation protocols.

C H A P T E R 3



22

Simplicity and modularity: lessons 
from Anthropic on agent design

As AI systems grow more autonomous, new 
architectural challenges are emerging. While 
most agents currently in production still fall 
within levels 0 and 1 of agentic intelligence—
conversational assistants or smart routers—
the long-term goal is to build systems 
capable of managing their own behavior, as 
seen in levels 2 through 4.

In that journey, the insights shared by 
Anthropic are particularly instructive. Having 
supported many enterprise teams in 
developing LLM-based agents, their 
takeaway is clear: the most effective 
implementations are often the simplest.

Anthropic distinguishes two main 
families of architectures:

- Agentic workflows: sequences of actions 
predefined by the developer, with the LLM 
executing them without initiative. These 
correspond to levels 0 and 1—agents that 
act, but only within rigid boundaries.

- Autonomous agents: systems in which the 
LLM manages the flow—choosing steps, 
selecting tools, and adapting to the 
environment. This is the core of levels 2 to 
4, involving growing autonomy, dynamic 
planning, and contextual adaptation.

Anthropic proposes a typology of battle-
tested orchestration patterns, which can be 
layered to gradually increase system 
complexity:

- Prompt chaining (Level 1): breaking 
down a task into fixed steps, where each 
output feeds the next input

- Routing (Level 1–2): directing requests to 
specialized processes based on their 
nature

- Parallelization (Level 2): handling 
subtasks in parallel, or generating 
multiple variations for comparison

- Orchestrator–worker (Level 3): a central 
agent dynamically plans and delegates 
tasks to sub-agents, then integrates their 

results

- Evaluator–optimizer (Level 3–4): a 
feedback loop where one LLM critiques 
and improves the outputs of another

- Autonomous agents (Level 4): systems 
capable of planning, executing, 
observing, adjusting—and even 
generating their own code to expand 
their capabilities

These patterns show that there is no sudden 
leap to full autonomy, but rather a step-by-
step progression toward agentic 
intelligence—by assembling simple, 
controllable building blocks.

“Success in the LLM space isn’t about 
building the most sophisticated system. It’s 
about building the right system for your 
needs— Anthropic

This incremental approach prevents teams 
from skipping critical maturity steps. Even 
reaching level 3, the orchestrator agent, 
requires strong guardrails: logging, 
sandboxing, and human-in-the-loop 
supervision.

As for level 4 agents—generative and 
adaptive—their use in production remains 
extremely limited today.

C H A P T E R 4

The key takeaway is simple: 
only add complexity when it 
truly improves performance.

This measured approach to 
agentic design helps keep 
both costs and environmental 
impact under control: the 
more complex and 
autonomous an agent is, the 
higher its computational 
needs—and therefore, its 
energy consumption.
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05. Guardrails and 
Agent Security
Implementing protective mechanisms and 
early insights into the security risks of 
autonomous agents
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Chapter 5
Guardrails and Agent Security

As AI agents gain autonomy, their behavior 
becomes harder to predict, test, and 
validate.

This rise in agentic capability—while 
necessary to handle complex tasks—
inevitably leads to a loss of control if no 
oversight mechanisms are in place. The 
more freedom an agent has in choosing its 
actions, the more likely it is to interact with 
sensitive systems, trigger unintended side 
effects, or make real-world mistakes.

For this reason, deploying an AI agent into 
production requires a robust system of 
safeguards, commonly referred to as 
guardrails. These mechanisms constrain the 
agent’s autonomy, limit its scope of action, 
filter its outputs, and ensure that its behavior 
remains aligned with business expectations, 
regulatory requirements, and security 
standards.

Why guardrails are necessary

The need for guardrails stems directly from 
the probabilistic and generative nature of 
language models. Unlike deterministic code, 
an AI agent:

- does not follow a single, predictable 
execution path,

cannot guarantee the accuracy of its 
outputs,

does not fully “understand” the real-world 
impact of its actions.

It may hallucinate facts, misinterpret 
prompts in unexpected ways, or trigger tool 
sequences that were not anticipated during 
testing. Moreover, errors may not be 
immediately visible—poor decisions can 
produce delayed, subtle, but critical 
consequences.In this context, guardrails 
serve a dual purpose. On one hand, they 

protect the user by enforcing reliability, 
consistency, and alignment with the 
intended use. On the other, they protect the 
organization, by constraining risky behavior, 
logging decisions, and ensuring full 
traceability.As shown in PHARE, a benchmark 
published by French startup Giskard, even 
the most widely used models can confidently 
generate incorrect answers, shift their 
reliability based on the user's tone, or see 
their accuracy drop sharply when operating 
under brevity constraints. These risks make 
strong supervision mechanisms essential for 
any production-grade AI agent.

What exactly do guardrails control?

Guardrails can target several dimensions of 
agent behavior. Common examples include:

1. Response quality – Avoiding outputs that 
are inappropriate, irrelevant, or 
incoherent.

2. Business rule enforcement – Preventing 
or flagging actions that require approval 
or must meet strict conditions (e.g., 
refunds above €100, contract 
cancellations, or alert triggers).;

3. Data protection – Ensuring the agent 
does not expose sensitive information or 
handle personal data without explicit 
consent.
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Main types of guardrails
Syntactic guardrails

Syntactic guardrails are simple filters applied 
to the agent’s inputs or outputs. These can 
include regular expressions or validation 
rules for expected formats, type or structure 
checks for JSON responses or tool 
arguments, as well as automatic 
normalization of values like dates, units, or 
codes.

These filters ensure that the model’s outputs 
comply with basic formatting constraints 
before they’re used in production. Their 
implementation typically doesn’t require 
another LLM—basic deterministic rules are 
often sufficient.

Semantic guardrails

Semantic guardrails focus on the meaning of 
the agent’s responses or actions. They 
include:

• Toxicity filters, which screen for offensive, 
discriminatory, hateful, or violent content—
even when expressed indirectly or 
unintentionally. These are essential to 
maintain safe, compliant communication, 
particularly in high-exposure or sensitive 
environments.

• PII (Personally Identifiable Information) 
detection, which automatically identifies 
and flags sensitive data such as names, 
addresses, phone numbers, or user IDs—
preventing accidental disclosure.

• Security filters, which validate function 
arguments before execution (e.g., 
ensuring a "price" field remains within 
authorized limits).

These guardrails are often powered by 
smaller, specialized generative models 
rather than full-scale LLMs, making them 
more efficient and easier to operate.

Behavioral or business logic guardrails

Behavioral guardrails restrict or condition 
specific actions, regardless of whether they 
are technically valid. They’re often 
implemented directly in system prompts 
(instructions) or embedded within the 
orchestration logic.

This layer is essential for enforcing business 
rules and domain-specific constraints—it 
ensures that agents don’t just act correctly, 
but appropriately within the operational 
context.

Dynamic guardrails

Dynamic guardrails are context-aware rules, 
triggered based on the agent’s behavior, 
task history, or confidence level. For example:

- An agent may be programmed to abort its 
task if it encounters too many consecutive 
errors.

- It may pause execution if the user 
expresses doubt (“Are you sure?”, “This 
doesn’t seem right…”).

These mechanisms introduce a form of built-
in caution, embedding a reflex of prudence 
into agent behavior and promoting safer, 
more responsible execution.

Human guardrails

Human oversight remains a vital 
complement to automated guardrails. In all 
sensitive situations, agents should be able to:

- Escalate to a human operator in cases of 
ambiguity or uncertainty.

- Submit critical actions for manual 
approval before completion.

C H A P T E R 5



26

Security risks: insights from early 
field reports

As AI agents become more autonomous and 
start being deployed in real-world 
environments, early feedback—particularly 
from Palo Alto Networks in their May 2025 
report "AI Agents are Here, So Are the 
Threats"—highlights a series of critical 
vulnerabilities that must be anticipated and 
addressed.

Prompt injection attacks are 
becoming more sophisticated

One of the most concerning threats is 
prompt injection, where malicious users 
manipulate the agent’s behavior, extract 
confidential information, or hijack its tools for 
unintended purposes. These attacks don’t 
necessarily require deliberate malice—
ambiguous or loosely framed prompts can 
already create exploitable openings.

Vulnerabilities often stem from 
design flaws, not frameworks

Broadly speaking, most security issues 
observed in agent deployments are not tied 
to any specific framework or technology, but 
rather to poor architectural choices, weak 
integration practices, or misconfigurations.

Agents connected to poorly secured third-
party tools—such as scripts, APIs, or 
databases—have a vastly increased attack 
surface. A single weak link can compromise 
the entire system.

For example, a malicious user could exploit a 
vulnerability in one of these tools to bypass 
application-level guardrails, access sensitive 
data, execute unauthorized code, or redirect 
the agent from its intended task.

If an agent has unrestricted access to a 
database management tool, a carefully 
crafted prompt could lead it to run a 
destructive command—believing it to be a 
legitimate user request. The attacker 
wouldn’t need infrastructure access; instead, 
they would manipulate the agent into 
executing the command on their behalf, in 
good faith.

Such an attack—enabled by a lack of tool-
level containment—could lead to critical 
data loss with no immediate alert.

Data leaks with critical 
consequences

Another major threat is the leakage of 
sensitive data. AI agents may inadvertently 
disclose API keys, tokens, or passwords—
exposing infrastructure toimpersonation and 
with minimal execution rights. attacks or 
privilege escalation.

Agents equipped with code interpreters are 
also vulnerable to code execution attacks, 
especially if their execution environments are 
not properly sandboxed or restricted.

In light of these risks, no single measure is 
sufficient to ensure safety. What’s needed is 
a systemic security strategy, with multiple 
layers of control applied throughout the 
agent’s lifecycle. This includes:
• Strengthening prompt design to prevent 

out-of-scope queries
• Implementing real-time content filters to 

block malicious instructions
• Strictly validating the data sent to external 

tools invoked by the agent
• Running agents in secure, sandboxed 

environments—with limited network 
access and minimal execution privileges

As AI agents grow more autonomous, they 
also become more exposed to complex, 
evolving vulnerabilities—risks that cannot 
be mitigated through isolated fixes. Only a 
risk-driven, cyber-by-design approach, 
embedded from the earliest design phases 
and integrating security, governance, and 
resilience, can effectively prevent misuse 
and targeted attacks.

This requires close collaboration between 
cybersecurity and AI teams, as 
demonstrated by the crisis simulation 
conducted by ANSSI and Wavestone at the 
AI Summit, which aimed to raise awareness 
around these emerging threats.

C H A P T E R 5
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06. Building an Agent 

Factory
Laying the groundwork to experiment with and 
deploy agentic AI within organizations
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Chapter 6
From experimentation to industrialization: 
Building an Agent Factory
To move from experimentation to controlled 
industrialization, organizations need to 
structure their agent development efforts 
through an Agent Factory. This approach is 
built on two fundamental pillars:

A shared technical foundation
At its core, the Agent Factory relies on a 
centralized architecture that organizes all 
resources required to operate AI agents. This 
includes:

• Unified access to AI models, with 
supervision, monitoring, and traceability 
mechanisms;

• Centralized access to business functions, 
databases, and connectors, exposed via 
a standardized interface—making them 
easily discoverable and usable by agents 
without custom development;

• A single point of reference for all 
deployed agents, describing their roles, 
capabilities, current status, and how they 
interact with one another.

A dedicated team of Agent Architects: this 
cross-functional team acts as a center of 
excellence. It supports business teams in 
identifying opportunities, designing agent 
workflows, defining agent roles, and 
structuring pilots or experiments. The team 
also plays a key role in governance, risk 
assessment, and ensuring alignment with 
the organization’s strategic priorities.

Together, these two pillars ensure a gradual 
and controlled maturity curve for the 
deployment of agentic systems across the 
enterprise.

Identifying high-impact use cases 
and early quick wins

Before scaling up, it’s essential to focus on 
use cases where agentic AI already 
demonstrates tangible value—automating 
not only repetitive tasks, but also processes 
that involve reasoning, planning, and 
autonomous action. Several families of 
agents are already emerging as promising 
candidates for early experimentation.

SWE agents (Software Engineering 
Agents)

Code generation is a well-established use 
case where generative AI delivers clear 
value. Today, the paradigm is shifting—from 
conversational assistants helping developers 
write code on request, to semi-autonomous 
agents capable of operating across entire 
codebases.

These agents now support developers in a 
wide range of technical tasks: code 
generation, unit test creation, 
documentation, refactoring, vulnerability 
scanning, and error analysis via log 
inspection.

Microsoft reports that 30% of its code is 
currently generated by AI, and projects that 
figure to rise to 95% by 2030—reinforcing the 
agent’s role as a key contributor to software 
engineering workflows.

Deep Search agents

Designed to conduct in-depth research 
across large and heterogeneous information 
sources—internal documentation, search 
engines, intranets, legal or scientific 
databases—these agents can synthesize 
information, cross-reference sources, and 
produce structured reports.

They are particularly useful in roles involving 
strategic intelligence, competitive analysis, 
audit, and decision support.
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Customer support agents

These agents understand the context of user 
requests—including request history, tone, 
and the product involved—then access 
relevant knowledge bases, generate 
personalized responses, and can even take 
direct action, such as escalating to technical 
support, issuing a refund, or routing the case 
to a qualified human agent.

They reduce the workload of support teams 
while enhancing the overall customer 
experience.

Such use cases are particularly well suited to 
agentic AI, as they combine natural 
language understanding, business logic, and 
interactions with third-party systems—a 
combination that generative AI can now 
reliably orchestrate at scale.

A centralized infrastructure to 
orchestrate agents and tools

Deploying agentic systems at scale requires 
a structured infrastructure, typically built in 
three foundational layers:

The first step is to centralize access to 
generative AI models through a Model 
Registry. This registry lists all models 
available within the organization. It manages 
versioning, usage policies, quotas, and 
security constraints. It is essential for 
ensuring traceability of LLM usage, 
monitoring performance, managing 
inference costs, and can allow agents to 
dynamically select the most appropriate 
model for a given task.

The second step is the implementation of a 
Resource Registry, which centralizes all 
technical resources (APIs, databases, 
functions, connectors). Thanks to the MCP 
protocol, agents can dynamically discover 
these resources, inspect their schemas, and 

connect to them without specific 
implementation. The Resource Registry also 
plays a key role in governance: it defines 
access rights, authentication, traceability, 
and security protocols for critical systems.

The third step is to deploy an Agent Registry. 
This acts as a directory of agents: listing 
those available, their roles, statuses, 
preferences, technical capabilities, and 
collaboration modalities. This registry 
enables the activation of coordinated multi-
agent environments, leveraging protocols 
such as A2A or ACP. For example, a manager 
agent can dynamically delegate a task to a 
remote agent, or two agents can negotiate 
how best to divide a complex workload.

Equipping teams to start 
experimenting

Designing an effective AI agent involves 
more than just connecting an LLM to a few 
tools. It requires full orchestration: context 
awareness, dynamic planning, action 
selection, error handling, and continuous 
adaptation.

Agent frameworks play a central role in this 
effort. They provide:
• Native handling of the perception → 

action → feedback loop
• Connectors to predefined tools
• memory and logging capabilities
• Evaluation and result interpretation 

mechanisms

For simple or exploratory use cases, a 
manual implementation or low-code tools 
like Langflow or Copilot Studio may suffice. 
But for critical operations, distributed 
systems, or sensitive use cases, a robust 
framework becomes essential. The choice 
of framework will depend on the 
organization’s tech ecosystem, the required 
level of customization, and the deployment 
strategy (cloud, on-premise, edge, etc.).

C H A P T E R  5
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07. Conclusion
Toward a thoughtful and effective 
approach to agentic AI
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Conclusion

AI agents represent a shift in automation: capable of
understanding, planning, and acting, they pave the way
for more adaptive and autonomous systems — provided
that their governance, technical integration, and
reliability limits are rigorously managed.

It is in this context that Wavestone’s AI 
Practice offering truly comes into its own. 
Aware of the technical, human, and 
organizational challenges tied to the rise of 
agent-based systems, we have developed a 
structured approach to guide companies 
through their transformation. This approach 
covers the entire lifecycle of an AI agent —
from defining robust governance, to 
identifying high-impact use cases, through 

to experimentation, industrialization, and 
secure production deployment.

Our ambition is clear: to harness agent-
based systems in service of business 
operations with rigor and clarity — unlocking 
their full potential without compromising on 
control, data security, or system stability.
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